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It is well known [1] that the calculation of characteristic polynomials of graphs 
of interest in Chemistry which are of any size is usually extremely tedious 
except for graphs having a vertex of degree 1. This is primarily because of 
numerous combinations of contributions whether they were arrived at by 
non-imaginative expansion of the secular determinant or by the use of some 
of the available graph theoretical schemes based on the enumeration of 
partial coverings of a graph, etc. An efficient and quite general technique is 
outlined here for compounds that have pending bonds (i.e., bonds which 
have a terminal vertex). We have extended here the step-wise pruning of 
pending bonds developed for acyclic structures by one of the authors [2] for 
elegant evaluation of the characteristic polynomials of trees by accelerating 
this process, treating pending group as a unit. Further,  it is demonstrated 
that this generalized pruning technique can be applied not only to trees but 
to cyclic and polycyclic graphs of any size. This technique reduces the secular 
determinant to a considerable extent. The present technique cannot handle 
only polycyclic structures that have no pending bonds. However,  frequently 
such structures can be reduced to a combination of polycyclic graphs with 
pending bonds [3] so that the present scheme is applicable to these structures 
too. Thus we have arrived at an efficient and quite a simple technique for 
the construction of the characteristic polynomials of graphs of any size. 
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1. Introduction 

The characteristic polynomial of a graph (which may represent a molecule, 
molecular transformation or some other algebraic relation of interest in 
chemistry) has been a subject of considerable attention in mathematical and 
chemical literature. It is an important structural invariant, even though it is not 
unique [4]. In view of the early significance of the characteristic polynomial as 
secular determinant in the simple HMO method, this particular rather significant 
finding that different structures may have identical polynomials was in fact 
recognized relatively late [5]. Today's interest in characteristic polynomial is 
because it arises in other considerations in chemistry in general, and structural 
chemistry in particular. Characteristic polynomials, the graph spectra, the spectral 
moments, and random walks are intimately related and study of one may answer 
important questions in the study of the other. In the past, both in mathematics 
and chemistry most of the attention was directed towards the spectral properties 
of graphs. In a way they are not quite the convenient quantities, being in general, 
irrational numbers whereas the coefficients of the characteristic polynomial, the 
spectral moments, and the count of random walks (of different length [6]) are 
all integers. However, the evaluation of characteristic polynomial is not as simple 
as it may appear to uninitiated, whose past experience is limited to relatively 
small and highly symmetrical structures. Graph theoretical evaluation of the 
characteristic polynomials received due attention as early as 1950 by Coulson 
[7] who indicated that the coefficients of the polynomial are related to a count 
of pertinent subgraphs of the molecular skeleton (in the case of pi-electron 
calculations of conjugated hydrocarbons, the relevant part of the skeleton is the 
structure formed by carbon atoms alone). Reviews on computing the characteris- 
tic polynomials are available [8] and useful references can also be found in 
reviews on the eigenvalue of graphs [9-11]. Several alternative graph theoretical 
procedures [12-23] for the construction of the characteristic polynomial are 
available. The situation can be inferred by a quote from a paper by Harary, 
King, Mowshowitz and Read [1]: "The calculation of characteristic polynomials 
of graphs of any size is usually extremely tedious, but there is a short cut which 
can be applied to any graphs having a node of degree 1, and in particular to 
trees." These authors [1] also derive a recursive relation (1.1) [24] for the 
characteristic polynomials of graphs 

C h  ( G )  = C h  ( G  - E )  - C h  ( G  - E E )  (1.1) 

where G is a graph, G - E  is the graph obtained from G after deleting the edge 
E and G - E E  is the graph with edge E and all its adjacent edges deleted. This 
formula, which was elevated to a status of a theorem [1], was known for long 
time and was used in chemistry to a considerable extent. This is the basis of the 
composition principle of Heilbronner [25] and takes particularly a simple form 
for special cases, like chains and rings. 

Several papers have recently appeared discussing a construction of characteristic 
polynomials such as alternative forms of the composition principles [26], contrac- 
tion of graphs [27, 28], and extending the above recurrence formula to include 
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cycles [29] and even more general subgraphs [30]. In addition characteristic 
polynomials for special cases have been reported, which include linear polyenes 
with side groups [31] and certain long chain cata-condensed hydrocarbon series 
[32]. While these approaches, when properly used, will result in significant 
simplification in the evaluation of the coefficients of the characteristic poly- 
nomials, they do not appear to be quite general. The approach based on deletion 
of a bond and all the cycles which contain this bond is suitable, for instance, for 
catacondensed polycyclic structures when finding all such cycles is not difficult. 
Contractions of graphs based either on symmetry properties of special cases [27] 
or otherwise [28] appears to be promising. Such steps can probably be incorpor- 
ated in other schemes, including the one outlined in the present paper. 

At present the situation is practically resolved only for the acyclic graphs (trees) 
for which the proposed construction of the characteristic polynomial is quite 
efficient [2]. Recently a scheme was suggested [3] wherein the characteristic 
polynomial of a graph is obtained from the characteristic polynomials of qualified 
subgraphs. The derived subgraphs in general have pending bonds and may also 
represent smaller polycyclic structures. Such an approach also appears to be 
very efficient for large graphs. The contributions of pending bonds were reduced 
by repeated use of recursion. We will show here the repeated use of recurrence 
to accelerate the previously proposed scheme for finding the characteristic 
polynomials of trees. Further we extend this technique to polycyclic graphs with 
pending bonds. The cases of polycyclic graphs without pending bonds lead to 
graphs with pending bonds or polycyclic graphs with fewer rings [3]. We conclude 
that combining these two approaches for the first time have an efficient practical 
general scheme for the construction of the characteristic polynomials for graph 
of any size, which is practical. 

2. Characteristic Polynomials of Trees 

2.1. Definitions and Preliminaries 

The adjacency matrix of a graph is defined as follows: 

1 if the vertices i and/' are connected. 
Aq= 0 otherwise. (2.1) 

The secular determinant of the adjacency matrix of a graph is known as the 
characteristic polynomial of the graph. The eigenvalues of the adjacency matrix 
constitute the spectrum of a graph. Tree is a connected graph with no cycles. 
The vertices of a tree with degree (valence) more than 1 can be considered as 
the roots of the tree. Any tree can be expressed as a product of a quotient tree 
O formed by a selected set of roots and the branches resulting from pruning 
the tree at these selected roots. For example, let us consider the tree in Fig. 1. 
When a tree is pruned at a set of roots branches of certain kind occur. A collection 
of such fragments is shown in Fig. 2 with the black circles identifying the roots. 
Let a branch containing k vertices (including the root) be denoted by Tk and 
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Fig. 1. A tree on 10 vertices with 6 pending bonds (i.e., bonds 
connected to a terminal vortex) which can be pruned to a quotient 
tree and branches. The characteristic polynomial of this tree can 
be obtained in terms of its quotient tree 

"S / 
hl:X h2=x2-1 h3=x (x2-2) h3=x 2 (x2-3) 

Fig. 2. Several types of branches that result in pruning any tree. Ti stands for the branch containing 
i vertices including the root, which is denoted by a black circle, hi stands for the characteristic 
polynomial of the branch Tt 

Fig. 3. The types of fragments resulting from q6 o o o o 
deleting the root of the branches in Fig. 2. T o o 1 

, T21 T 3 Tz, 1 Ti is the fragment obtained after deleting 11 
the root of Ti. The characteristic polynomial h11=1 h21:x h31=x 2 hl+l:x 3 
of TI is h~ 

let the characteristic polynomial of the branch Ti be hi. It can be seen that 
hl = x  i - ( i -  1)x i-2. Let  the fragments obtained by deleting the root  in T~ be 
denoted by h (Fig. 3). The characteristic polynomial of ti, hl = x i-1. The tree in 
Fig. 1 can be pruned at the roots a, c and d, resulting in the tree Q shown in 
Fig. 4 and the fragments Tll ,  TEl, Tal and Tat. Let  us group all the vertices of 
the same degree in the unpruned tree in Fig. 1 into the same sets. Then, the set 
thus obtained would be 

Y1 = {a}, Y2 = {b}, II3 = {c} and II4 = {d}. 

The tree in Fig. 1 can be obtained by attaching each root in the set Yi to the 
root  of a copy of the type Ti~. Such a product was formulated by one of the 
authors [36] which was called root- to-root  product  and can be denoted as Q. 
(Tll ,  T2i . . . .  ) 

2.2 Elegant Evaluatiion of Characteristic Polynomials of Trees 
by Tree Pruning Techniques 

It was shown in Ref. [2] that the tree pruning technique paves an elegant way 
for the evaluation of characteristic polynomials of trees by contracting the secular 
determinant  of the unpruned tree in terms of the secular determinant of the 
pruned tree and the branches. Let  Q be the quotient tree obtained in one-fold 
pruning and let Tll ,  T21 . . . .  be the types. The vertices in Q are divided into 
sets II1, Y2 . . . .  so that all the vertices in Yi are attached to the root  of a copy 
of the same type T~I. Let  Hi be the characteristic polynomial of T~ (which is 
equal to hk if T~ contains k vertices) and H~ be the characteristic polynomial 
of the type T,. with the root removed. Let  qij be the adjacency matrix of the 
pruned tree (quotient tree). Define a new contracted adjacency matrix of order 
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Fig. 4, The quotient tree and the branches 
obtained when the tree in Fig. 1 is pruned at 
all the roots. Roots are differentiated by various ~ ~ - -  ~  
symbols. To obtain the tree in Fig. 1 attach the 
root of a symbol with the root of the branch 
carrying that symbol 

Tll T21 T31 

mxm if m is the number of vertices in Q by the following recipe: 

I --Hk (x) if i = / and i ~ Yk 
Aq=l+qiiHk(X) i f i # / a n d i s  Yk. (2.2) 

Then using a lemma of Schwenk [38] and a theorem of Godsil and McKay [39] 
the following result was established in Ref. [2]. 

Theorem 1: The characteristic polynomial of the root-to-root product O. (Tll, 
T21,. . .)  is just the determinant of the matrix A defined above. 

Consider now the tree in Fig. 1 and the pruned tree O in Fig. 4. The adjacency 
matrix of the tree in Fig. 4 is shown below. 

a b c d 

b 0 1 
c 1 0 (2.3) 

d 0 1 

By the above theorem 1 the characteristic polynomial of the tree in Fig. 1 is 

H i  -H2  + H i  0 = +1 - x  +1 (2.4) 
, 0  0 

0 + H i  -H4  0 0 h~ -h3 

Recall that hl is the characteristic polynomial of a branch containing i vertices 
(including the root) and h~ is the characteristic polynomial obtained by deleting 
the root. 

There are two aspects of the above scheme, even for trees, which have not been 
considered before. They are partial pruning and extensive pruning. The former 
is the procedure where only some of the terminal vertices are removed while in 
the latter procedure larger fragments involving terminal vertices are removed 
in one step. The latter procedure seems to be more efficient than in the former. 
However, partial pruning will be of interest when comparisons of different trees 
are made (for example, to see if they are isospectral) because, this process can 
reduce a larger graph to a graph of desired form. The partial pruning is illustrated 
here only to emphasize that the procedure of contraction of secular determinants 
of graphs is quite general. Consider the same tree in Fig. 1 which will now be 
pruned selectively at the vertices a and d. This results in the tree shown in 
Fig. 5. The characteristic polynomial of the tree in Fig. 1 is shown below in 
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Tll T21 

Fig, 5. An illustration of partial 
selective pruning. The same tree in 
Fig. 1 is selectively pruned 

terms of the tree in Fig. 5. 

(2.5) 

a 

b 

Ch (x) = c 

d 

e 

a b c d e 

- h 4  hl  0 0 0 

1 - x  1 0 0 

0 1 - x  1 1 

0 0 - h l  h3 0 

0 0 1 0 - x  

The above determinant  can be related to the determinant  (2.4) as shown in the 
Appendix.  This demonstra tes  the use of partial pruning. 

2.3. The Use of Repeated Pruning 

Consider the graph (2-methylhexane) shown in Fig. 6. If one prunes the tree at 
the joints in either ends one obtains the contracted determinant  of order 4 shown 
below. 

- x ( x 2 - 2 )  x 2 0 0 [ 

1 - x  1 0 
0 1 - x  1 (2.6) 

0 0 x - ( x ~ -  1) 

Expanding (2.6) with the elements of last row, one obtains (7.7) 

- x ( x 2 - 2 )  x 2 0 - x ( x 2 - 2 )  x 2 0 

- ( x  2 - 1 )  1 - x  1 - x  1 - x  0 

0 1 - x  0 1 1 

(2.7) 

The determinants  of similar molecules such as 2-methylheptane,  2-methyloctane,  
etc. will look similar but for the presence of additional non-critical rows and 
columns. The determinants  in (2.7) can be rearranged into a single determinant  

Fig. 6. The chemical graph of 2-methylhexane: the use of repeated 
pruning 
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(2.8) shown below by using addition theorem for determinants and an interchange 
of the last column with the last row. 

--X(X2--2) X 2 0 

1 --X 1 
0 X 2-1  --X(X 2-2) 

(2.8) 

The determinant (2.8) is just the contracted determinant obtained if one prunes 
the tree on either side so as to create C-C-C branches with a terminal root in 
one case and a centered root in the other case. This process of selective pruning 
leads to a theorem. 

Theorem 2: Let L ,  be a chain of length n and let L ' - I  be the graph obtained 
after deleting the root  in Ln. Let the characteristic polynomials of Ln and L ' - I  
be In and I'_1, respectively. Then the characteristic polynomial of a graph which 
contains Ln is the determinant of the contracted matrix in which the rows 
corresponding to the roots of attachment are replaced by -In (diagonal element) 
and + l ' - 1  (off diagonal elements), respectively. 

The proof of theorem 2 (with L0 = -x ,  l~ = 1) follows from theorem 1 if one 
identifies the point of attachment of the chain Ln in the unpruned graph as the 
root and considers the unpruned graph G as the root- to-root  product of the 
pruned quotient graph with the rooted chain L, .  Note that theorem 2 holds 
independent of the nature of the quotient graph (acyclic or cyclic) as long as it 
gives the unpruned graph if the chain L ,  is attached at the chosen root. This 
gives rise to an important corollary, stated below as corrollary 1. 

Corollary 1: The characteristic polynomial of a cyclic or a polycyclic structure 
with pending chain of length n can be constructed from the contracted deter- 
minant in which the row corresponding to the root is replaced by l, and l'_~, 
respectively. 

Structures with several pending chains require combined use of the simple 
pruning scheme outlined in Ref. 2 and the use of chains of varied length instead 
of "branches"  T~j's which contain a single root. 

3. Characteristic Polynomials of More General Pending Fragments 

We consider here pending fragments which are acyclic. Consequently they 
necessarily involve terminal vertices. The process of pruning can now be applied 
by disconnecting a whole fragment, which may have several branches. We have 
already seen that the process of pruning is "additive".  This additivity extends 
also to the presence of several fragments F,,  if one views each such branch 
separately. For example, in a graph of 3-methylalkanes (shown in Fig. 7) we 
may consider Fn as methyl and ethyl groups with characteristic polynomials: x, 
(x 2 - 1 ) ,  one at a time and contract the graph to shorter chain. However,  if we 
view both of them as parts of a single fragment of four vertices the contracted 
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Fig. 7. A class of 3-methyl alkanes. For their 
characteristic polynomials see Sec. 3 

determinant  will be of the form: 

( 0 - - 0  0 - - 0 ) ,  

- ( x 4 - 3 x 2 + l )  x ( x 2 - 1 )  0 

1 - x  1 
. . . 

0 0 

0 0 

I W I 

. ~ ~ (3.1) 

Expanding the above determinant  we obtain Eq. (3.2). 

Ch (G)  = - ( x  4 - 3x  2 + 1)R, - x (x 2 - 1)R,_I (3.2) 

where R ,  and R,_~ are the residuals (the parts of the secular determinant 
involving the remaining rows and columns after the first (for R , )  and first two 
(for R~-I) have been deleted. Here  it is assumed that the atom next to the root 
has no neighbors except for linear chain (but this is not a severe restriction), 
since the expansion only requires first atom to have a single neighbor. (However, 
additional neighbors can always be pruned). Now we can once again apply the 
recurrence on R ,  giving: 

Ch (G) = - ( x  4 - 3x 2 + 1 ) ( -xR. -1  + Rn-2)  - X ( X  2 - -  l)Rn-1 (3.3) 

Expression (3.3) on simplification yields Eq. (3.4) 

C h ( x ) = - x ( x 4 - 3 x E +  l ) R " - ' - x ( x 2 - 1 ) R . _ l - ( x 4 - 3 x 2 +  l )Rn_2 (3.4) 

The combination of the first two terms in R._~ in Eq. (3.4) gives Eq. (3.5) 

Ch (x) = - ( x  s - 4x s + 2 x ) R . _ l  - (x 4 - 3x 2 + 1)R._2 (3.5) 

This is equivalent to attaching at the root of the quotient tree shown below to 
the next atom in the chain. 

Observe that the nature of R, -1  o r  Rn-2 does not enter the consideration, so 
that the conclusions are valid for more general graphs with pending bonds on 
any cyclic or polycyclic frame, as long as we are confined to pending section of 
the skeleton. The illustration given motivates the statement of quite a general 
case of a graph with F1 and F2 being some fragments and Rn being residual, 
which can be cyclic, polycyclic, acyclic or even simple chain of length 1. 

We then have a general theorem: 

Theorem 3: The characteristic polynomial of a graph shown in Fig. 8, with F1 
and F2 being acyclic fragments and R1 being residual (having at least one bond 
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Fig. 8. A graph which has acyclic fragments F1 and 
F2 and R is a residual graph which may be cyclic 

length attachment to Ro, and arbitrary residual) is given by contracted deter- 
minant with (fl +f2) as the diagonal element and fl "f2 as off diagonal element 
if fl and f2 are the characteristic polynomials of Fa and F2, respectively. 

The proof can be simply derived when R~ is a single bond (Ro being a single 
vertex) in which case the graph is reduced to cases already considered, but the 
validity of proof does not depend on choice of R1 which involves a fixed part 
of the determinant not used in expansion. 

3.1. Illustrations with Cyclic Structures 

Consider the simple graph of Fig. 9a. The cyclic part is considered as Ro and 
the ethyl substituent as F. One obtains the following contracted determinant. 

- x (x2 -2 )  (xZ-1) (x2-1) 

1 - x  1 (3.6) 

- x  1 1 

Expanding (3.6) one obtains Eq. (3.7) 

Ch = x s + 5x 3 + 2x 2-  4x; - 2. (3.7) 

Expression (3.7) can be compared with available tables [33] (one should replace 
x by - x  for the comparison due to an alternative definition of the characteristic 
polynomial) [34]. As another illustration consider graph b in Fig. 9. We have 
here several but all pending fragments as single exocyclic bonds. The contracted 
determinant is given by determinant (3.8) 

-(x 2 -  1) x 0 x 
X 2 --X(X2--2) X 2 0 
0 1 --X 1 (3.8) 

1 0 1 --X 

Fig. 9. Two graphs which contain cycles. For their 
characteristic polynomials see Sec. 3.1 a b 
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Expanding (3.8) we obtain 3.9 which agrees with results that can be obtained 
by other  methods 

Ch = x  7 -  7x 5 + 8x 3 -  2. (3.9) 

4. Applications 

Characteristic polynomials are given in a closed form for only few special class 
of graphs [9]: the complete  graphs Kn, the n-cycle (or the ring Cn), the n-cube 
On, the complete  t-parti te graph (which includes as special case the complete 
biparti te graphs Km.n and stars KI , , ) ,  the wheels (i.e., K1 + C~_1), path (or linear 
chains) graphs Pn, and n-dimensional  octahedra.  We will now show that all the 
above ment ioned classes can now be extended to include graphs in which all 
vertices have the same pending fragment.  The  simplest case is the class of 
radialenes [28] shown in Fig. 10. These are derived by attaching a single exocyclic 
bond to n-cycle. Consider for illustration the graph in Fig. 11. If one considers 
the 4 vertices of the 4-cycle in Fig. 11 as roots then one obtains the contracted 
determinant  (4.1) for the characteristic polynomial  of the graph in Fig. 11. 

- ( x  2 -  1) x x x 1) 
x - ( x 2 - 1 )  x 0 

x x - ( x  2 - 1) x 

x 0 x - ( x  2 -  

(4.1) 

Because of equal substitutions we can now factor out x 4 and introduce a 
substitution (x 2 - 1)/x = y, which transforms the determinant  back into the form 
representing the characteristic polynomial  of the quotient graph obtained after 
deleting the pending bonds. The characteristic polynomial  of this quotient graph 
is shown in the expression (4.2) 

Ch (Q;  x) = x 4 - 5x 2 + 4x (4.2) 

+ 
Fig. 10. A class of radialenes. Their characteristic 
polynomials can be obtained by an elegant tech- 
nique outlined in Sec 4 

Fig. 11. A graph which contains a 4-cycle. Its characteristic polynomial can be 
obtained by a substitution in the characteristic polynomial of the 4-cycle 
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The characteristic polynomial of the original graph is thus given by Eq. (4.3) 

Ch (x) = x 4 ( y  4 - 5 y  2 + 4y)  

= (x 2 - 1 )  4 -  5x2(x 2 - 1 ) 2 +  4xa(x 2 - 1 )  

= (X 6 - -  8 X  4 + 4X 3 + 8X 2 -- 1)(X 2 -- 1) 

(4.3) 

The result can be checked with available tabulation [21]. The presence of a 
factor in the characteristic determinant of the core will result in the factor for 
the exocyclic structure. 

Using the above regularity, one can use available tables of characteristic poly- 
nomials to derive the characteristic polynomials of homogeneously substituted 
structures. In Table 1 we show the results for radialness and higher homologues. 

As another application consider graphs in Fig. 12. The contracted determinant 
for this graph with roots chosen as in Fig. 12a is shown in determinant (4.4) 

- - X ( X 2 - - 2 )  x2-1  x2-1  0 0 

1 - x  1 0 0 

1 1 - x  1 1 

0 0 1 - x  1 

0 0 1 1 - x  

(4.4) 

Table  1. The  characteristic polynomials  for radialenes with R being O - - O ,  O----O-----O, 

and ~ - - - o .  The coefficients of the polynomial  expressions are those  of cyclic graphs 

Cn(n = 3, 4, 5, 6, 7 . . )  which are available (e.g., Ref. [25]) 

Radialenes 
n = 3  
n = 4  
n = 5  
n = 6  
n = 7  

n = 3  
n = 4  
n = 5  
n = 6  
n = 7  

n = 3  

R = Q - - O  i.e., (x 2 - 1) 
(x 2 - 1)3 _ 3xZ(x  z _ 1) + 2x 3 
(x 2 - 1 )  4 - 4 x 2 ( x  2 - 1 )  2 
(X 2 - -  1 )  5 - -  5 X 2 ( X  2 - -  1 )  3 + 5 X 4 ( X  2 - -  1 )  "4- 2x s 
(x 2 - 1 ) 6 -  6x2(x 2 - 1)4 + 9x4(x 2 - 1 ) 2 -  4x 6 
( x2 -- 1) 7 -- 7X2( x2 7 1) 5 + 14X4( x2 -- 1) 3 -- 7X6( x2 -- 1) + 2X 

R = O - - O - - O  i.e., (x a - 2 x )  
(x 3 - 2 x )  3 - 3 x 2 ( x  3 - 2 x ) + 2 x  s 
(x s - 2x)  4 -  4x2(x 3 _ 2x) 2 
(x 3 - 2x)  4 -  5x2(x 3 -  2x)  3 + 5x4(x s -  2x) + 2x 5 
( x 3 -  2 x ) 6 - 6 x 2 ( x  3 - 2x  )4 + 9x4(x  3 - 2 x ) 2 -  4x 6 
(X 3 -- 2X)7 -- 7xE(x 3 -- 2X)S + 14X4(X S -- 2X)2 -- 7X6(X 3 __ 2X) + 2X 7 

R = ~ i.e., ( x a - 3 x  2) 

(X 4 - -  3x2) s - 3x2(x 4 - 3x 2) + 2x 3 

etc. 
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o b 

Fig. 12. Two graphs which illustrate the concept of 
"difference".  For a discussion of "difference" of charac- 
teristic polynomials see Sec 4 

The contracted determinant  of the graph in Fig. 12b differs only in the first row 
which is shown below. 

- - X ( X 2 - - 2 )  X 2 X 2 0 0 

The graphs represent  a case of a single exocyclic group. In both cases we can 
factor out f (which is x 2 - 1  and x z respectively) restoring the first row of the 
determinant  to represent  adjacency conditions for the substituted vertex. The 
only difference is in the first diagonal e lement  and the factor. Such a form allows 
easy comparison of the characteristic polynomials. In fact by expanding the 
secular determinants  by elements of the first row one obtains: (for the a and 
the b graph, respectively): 

i(oOo) l:)] , 46  

Here  we use notational device of Zykov  [35], in which a graph also represents 
the polynomial  [i.e., the characteristic polynomial  in our discussions]. Sub- 
stituting, 

( d ~ )  = x 3 - 3 x + 2  

in (4.4) and (4.5) one obtains the difference between (4.4) and (4.5) to be (4.7). 

2x 3 _ 2x 2 _ 4x + 4 (4.7) 

This can be compared  with available characteristic polynomials for the two 
graphs [33]: 

X 7 - - 8 X 5  + 4 X 4  q - 15X 3 --  1 0 x 2 -  6x + 4  (4.8) 

x 7 - 8x 5 + 4x 4 + 13x 3 - 8x 2 - 2x (4.9) 
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When molecules possess a number of common structural features many terms 
in the difference will cancel. This is therefore of interest when considering 
structurally related species. Then it may suffice only to obtain the characteristic 
polynomial for a single case, all others being derived from examination of the 
pertinent differences. It seems that in this way considerable simplification can 
result when studying or tabulating characteristic polynomials of a collection of 
structures - an approach that deserves additional attention. 

5. Concluding Remarks 

We have shown in this paper that the construction of the characteristic polynomial 
for a large class of compounds in which a core (which may be acyclic, cyclic or 
polycyclic) is substituted by a number of pending fragments can be derived in 
an efficient way by the construction of a contracted secular determinant analogous 
to the approach previously described for trees and their pruned subgraphs [2]. 
Neither the core to which pend!ng branches are attached ought to be tree, nor 
the pruning has to be made in single steps. This permits wider applications and 
accelerates the constructions of the characteristic polynomials. When this 
approach is combined with the scheme using Ulam subgraphs as a source for 
derivation of the characteristic polynomials [3] we arrive at quite general pro- 
cedures suitable for any large structure. It seems that for the first time we have 
a tool for obtaining the characteristic polynomials of complex structures in a 
relatively simple and pragmatic way. 

We therefore feel that the "problem of the characteristic polynomials"-which 
has plagued theoretical chemistry and mathematical graph theory for quite a 
while- has been finally successfully resolved in practical terms (and we do not 
wish to belittle the important theoretical developments that preceded and pro- 
vided important insights, even if found "extremely tedious" due to their inherent 
n! character in proliferating combinatorial possibilities accompanying applica- 
tions to large structures). Despite the present success we can anticipate some 
further developments, such as (1) the further study of related structures (exploit- 
ing numerous regularities in the coefficients that such structures may have [39]; 
(2) possible incorporation of contraction of graphs of polycyclic structures 
(developed recently by the Chinese school of chemical graph theory); and (3) 
extending the present approach to more general pending fragments. In Table 2 
we illustrate our method with the graph in Fig. 13 which has no pending bonds. 
When C4 ring is considered as the core and ethyl-cyclopropane as fragment 
expansion of the contracted secular determinant gives correct answer for the 
characteristic polynomial even though the system has no acyclic pending frag- 
ments. This suggests a wider applicability of the approach now limited to acyclic 
fragments. However, if we view the same molecule as a C3 core (cyclopropane 
ring) and take ethylcyclobutane part as the fragment one obtains correct answer 
by the development of the secular (contracted) determinant only if contributions 
arising from fragments without roots (f) are taken with opposite sign (but not 
those products involving x and f). This is suggesting that signs of the contributions 
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Table 2. Alternative ways of pruning the molecule in Fig. 13 

A. Roots chosen as in Fig. 13a 

- ( x S - 5 x 3 + 2 x 2 + 4 x - 2 )  ( x4 -4x2+2x+l )  0 ( x4 -4x2+2x+l )  

1 - x  1 0 

0 1 - x  1 

1 0 1 - x  

= - - ( X  3 - -  5 X  3 + 2x 2 + 4x - 2 ) ( - x  3 + 2x) - 2 ( x  4 - 4 x  2 + 2x + 1)(x 2) 
= x 8 - 9x 6 + 2x 5 + 22x 4 -  lOx 3 -  lOx 2 + 4x 

B. Roots chosen as in Fig. 13b 

--(X6--6X4+6X 2) (xS-5x3+2x)  (xS-5xa+2x)  

1 - x  1 

1 1 - x  

= --X2(X 6 -- 6X 4 + 6X 2) + 2(-1)a(x 5 - 5x 3 + 2x) 
+ (x6-  6x 4+ 6x2)-  2x(x s -  5x 3 + 2x) 

C. Roots chosen as in Fig. 13c 

- - ( X 4 - - 4 X  2) x 3 - 2 x  0 

1 - x  1 

0 X 2 - - 1  - - ( X 3 - - 3 X  + 2 )  

= --(X 4 -- 4X2)(X 3 -- 3X 2 + 2)(X)  + (X 4 -- 4X2)(X 2 -- 1) + (X 3 -- 2X)(X 3 -- 3X + 2)  

= - [x  8 -  9x 6 + 2x 5 + 22x 4 -  lOx 3 -  lOx 2 + 4 ]  

a In normal expansion this term would have positive, not negative contribution. 

a 

b 

c 
Fig. 13. A graph which has no pending 
bond. However, the technique developed 
here can be applied by "pruning" the 
graph in 3 ways. Table 2 discusses the 
characteristic polynomials ~for these 3 
ways 

m a y  b e  g o v e r n e d  by  s o m e  ru les  d e p e n d i n g  o n  t h e  n u m b e r  of  c o m p o n e n t s  i n v o l v e d  

(as in S a c h s '  t h e o r e m  fo r  ins tance ) .  P r e l i m i n a r y  w o r k  sugges t s  t h a t  i n d e e d  o n e  

m a y  be  in a p o s i t i o n  to  e x t e n d  t h e  p r e s e n t  s c h e m e  to  cases  h a v i n g  m o r e  g e n e r a l  

p e n d i n g  f r a g m e n t s .  Th i s  is f u r t h e r  s t r e n g t h e n e d  by  t h e  fac t  t h a t  t h e  g r a p h  s h o w n  

in Fig.  13 can  a lso  be  v i e w e d  as a d e r i v a t i v e  of  C3 cha in  w i t h  t h e  t h r e e  a n d  f o u r  

m e m b e r e d  r ings  at  t h e  e n d s  as s u b s t i t u t e d  f r a g m e n t s .  A g a i n  t h e  e x p a n s i o n  of  

t h e  d e t e r m i n a n t  g ives  t h e  c o r r e c t  an swer .  T h i s  i nd i ca t e s  such  e x t e n s i o n s  n e e d  
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proper  attention and adequate  proofs. This is beyond the scope of the present  
work. 
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Appendix 

The relation between the characteristic polynomials of (2.4) and (2.5). Using 
the elements of the fifth row for the expansion of the determinant  one obtains 

--X2(X21 - 3) -xX3 01 00 2) 

C h ( x ) = ( - x )  0 1 - x  1 

0 0 X 2 --X(X 2 -  

1 - x  0 (A.1) 
+ 0 1 1 

0 0 --X(X2--2) 

The second determinant  (corresponding rows being a, b, c, d and columns a, b, 
d, e) is now expanded using the last c column. The result can be expressed as 
follows: 

a b d 
a -x2(x  2 -  3) x 3 0 0 

b 1 - x  0 0 (A.2) 

d 0 0 - x ( x 2 - 2 )  0 

a b d 1 

In (A.2) a row and column in the third position was added without affecting the 
value of the determinant,  with a, b, d yet to be determined. By rear rangement  
of rows and columns one then obtains for the form of this determinant:  

--xZ(x2--3) X 3 0 0 

1 - x  0 0 
a b - 1  d (A.3) 

0 0 0 - x ( x 2 - 2 )  

(The minus sign was absorbed in the diagonal element). The parameters  a, b, 
d are now chosen so that the columns of the first determinant  in the expansion 
of Ch(x) and the last determinant  agree, i.e., a = 0 ,  b - - - x ,  d = - x .  The two 
determinants  now differ only in single column and can therefore be added to 
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give (A.4) (when factor - x  is associated with the third row) 

--X2(X2--3) X 3 0 0 

1 - x  1 0 (A.4) 
0 - x  x 2 - 1  - x  
0 0 x 2 - x ( x  2) - 2 )  

This differs trivially from the contracted determinant based on vertices a, b, c, 
d (the minus sign can be factored out). Hence the procedure of partial pruning 
yields the same result as that of complete pruning. 
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